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Our Team

An expert team of ICPC Gold medalists, World Finalists, experienced problem setters,

and top-tier AI researchers with over 1,000 papers and 200,000 

citations in total.

2/29



Media Coverage

- Tweeted by top AI influencers, accumulating over 1M views in total on X

- Covered by MIT Technology Review on June 24, 2025
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TL; DR: What is LiveCodeBench Pro?

LiveCodeBench Pro is a high-quality competitive programming benchmark which 

tests the genuine deep algorithmic reasoning abilities of the state-of-the-art AI 

models with detailed diagnostics handcrafted by an expert team of Olympiad 

medalists and AI researchers. 

Top 3 insights from our evaluation:

▸ Models lag humans on hardest problems (0% on Hard tier for any model)

▸ Structured logic ≫ creativity for reasoning models

▸ Tool use inflates scores (Bayesian Elo w/o tools ≈2116 vs. 2700+ reported)
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Agenda

▸ Motivation – What is Competitive Programming (CP) & Why It Matters

▸ Current Gaps – Limitations of Current CP Benchmarks

▸ Our Solution and Main Results – A Quick Glance at LiveCodeBench Pro

▸ Deep Diagnostics – Fine-grained Annotations & Error Analysis

▸ Open Questions & Discussion

▸ Q&A
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1.  Motivation

What is Competitive Programming (CP) & Why It Matters
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▸ Success requires both  mathematical insight      and         flawless implementation

▸ Think of LeetCode on extreme steroids - but way, way harder!

▸ It's essentially mathematics with code - pure algorithmic reasoning

▸ Problems require deep insights from:

Number theory and combinatorics

Graph theory and dynamic programming

Game theory and optimization

Complex data structures

What is Competitive Programming?

Carefully curated test cases        ensure no guessing    - only pure reasoning
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Unlike ultimate math challenges, the evaluation is 100%  free from human graders, 

fully automated, objective, and robust

No ambiguity in correctness - either your algorithm works or it doesn't

Ultimate objectivity - fully automated evaluation, no subjective judgment, only 

pass/fail

▸ Exhaustive hidden test suites    - impossible to game or guess

Pure reasoning challenge - tests the very edge of human cognitive abilities

Unified environment - same hardware, same constraints, fully replicable

Why Is This Perfect for AI Evaluation?

▸

▸

▸
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Competitive Programming - Industry Gold Standard

The first wide-adopted benchmark in competitive programming, LiveCodeBench, 

has been used by major AI labs for model evaluation, and reflected in their model release reports.

OpenAI

Model cards & releases

Anthropic

Claude evaluations

Google

Gemini assessments

The de facto standard for measuring deep algorithmic reasoning in LLMs
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2.  Current Gaps

Is LiveCodeBench good enough?  NOT QUITE!
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Limitations of LiveCodeBench 

Low differentiation:  Top reasoning models solve ~80% of tasks

while non-reasoning models can solve over 65% of tasks.
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Limitations of LiveCodeBench

No direct comparison with humans or Diagnostics for further improvement:

What does 80% solve rate imply?

Is it super-human intelligence or just average human level?

How does its reasoning pattern compare with a human at the same level?  

Humans: ? %

Average CS major undergrads: ? %

Senior software engineers at FAANG: ? %

IOI gold medalists: ? %
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Limitations of LiveCodeBench 

Data contamination and exaggerated liveness claim: 

Tasks are updated every 3-6 months for “liveness”, 

but solutions and editorials are out only 1-2 days after release of the tasks.

With tool usage, the solutions can be easily found on the Internet

→ not true deep algorithmic reasoning abilities   
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3.  Our Solution and Main Results

A Quick Glance at LiveCodeBench Pro
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Introducing LiveCodeBench Pro

▸ 584 high-quality problems (still being updated live) from premier contests (Codeforces, ICPC, IOI)

▸ Real-time collection - captured and evaluated before any public solutions to prevent data contamination

▸ Bayesian Elo ratings - directly comparable to human levels

▸ Fine-grained annotation and analysis of algorithmic categories and failure modes by Olympiad medalists

▸ No LeetCode problems - only the hardest, most contamination-free challenges are included,

representing the boundaries of human 
intelligence in algorithmic reasoning
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LiveCodeBench Pro - The Difficulty Spectrum

Easy
≤2000 Elo Rating

~15 minutes for world-

class competitors

Medium
2000-3000 Elo Rating

Multiple algorithms + 

advanced reasoning required

Hard
>3000 Elo Rating

Defeats 99.9% of participants 

in competitions

Hard problems sometimes remain unsolved even by the strongest competitors during live contests!
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The Reality Check: Model Performance

53%
Best model (o4-mini-high)

pass@1 on Medium problems

0%
ALL models

pass@1 on Hard problems

2116
o4-mini-high rating

vs 2700+ reported with tools

top 1.5% among human competitors

Significant gap remains to human grandmaster levels, especially without external tools
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4.  Deep Diagnostics

Our findings - A deeper dive into the statistics
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Three Types of Cognitive Challenges

Knowledge-Heavy

Templates, algorithms, deep 

mathematical results. Success 

depends on breadth of knowledge 

and implementation skill.

Examples: Segment Trees, FFT, 

Graph Algorithms

Logic-Heavy

Step-by-step mathematical 

reasoning, systematic derivations, 

combinatorial analysis.

Examples: Dynamic 

Programming, Combinatorics

Observation-Heavy

"Aha!" moments, creative 

insights, deductive leaps that 

collapse the problem space.

Examples: Greedy, Game 

Theory, Constructive

Each category tests different cognitive abilities and represents distinct challenges for AI reasoning
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Key Finding #1: The Skill Spectrum

LLM Strengths

•Knowledge-Heavy: Segment trees, data 

structures

•Logic-Heavy: Combinatorics, DP, math

• Implementation: Bug-free, syntactically 

correct

LLM Weaknesses

•Observation-Heavy:  Game theory, greedy, ad-hoc

•Case Work: Edge cases and corner conditions

• Interactive: Dynamic problem-solving dialogue

LLMs excel at structured reasoning     but struggle with

creative insights
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Key Finding #2: Error Analysis

Conceptual 

Errors
•64.2% more than humans (87 vs 53 out of 125)

•Algorithm logic errors

•Wrong observations

•Faulty mathematical reasoning

Implementation Errors

•62.5%  less than humans (15 vs 40 out of 125)

•Syntax errors almost non-existent

• I/O handling consistently correct

• Initialization errors rare

56 out of 125 LLM submissions fail on given sample inputs - 410% more than human submissions!

Models don't verify basic correctness - easy potential improvement with terminal usage

Line-by-line analysis of 125 failed submissions from o3-mini vs humans:
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Key Finding #3: Multiple Attempts Matter

Observation-heavy problems (Game Theory, Greedy, Case Work) benefit most from pass@k

Making different hypotheses on different attempts without rigorously proving does the magic

Points converge on pass@10 - still 400+ point gap to reported performance with tools

Even with pass@k, 0% success rate on Hard problems

pass@1  - 1793 Elo
o4-mini-medium performance on a single attempt

top 5% among human competitors

pass@10  - 2334 Elo
o4-mini-medium performance after 10 attempts

top 1% among human competitors

+541 improvement!
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The Power of External Tools

▸ Terminal access & tool calls explain the remaining ~400 Elo gap

▸ Local compilation: Catch syntax errors immediately

▸ Sample testing: Verify correctness on provided examples

▸ Brute-force validation: Generate test cases to find edge case bugs

▸ Pattern discovery: Run experiments to find algorithmic insights

▸ Search solution from the web:  Shortcut to success without reasoning -> Liveness is important in evaluation

Without tools: native reasoning limitations become apparent
With tools: Models can iteratively debug and improve solutions
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Key Finding #4: Reasoning vs Non-reasoning

Biggest Gains

•Combinatorics: +1400 Elo improvement on R1 vs V3

•Knowledge-Heavy: 

Data structures, segment trees show large gains

Limited Gains

•Observation-Heavy: 

Game theory, greedy show minimal improvement

•Some categories even show negative improvement

Current reasoning methods excel in structured logic but have inherent limitations for creative problem-solving
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Comparing DeepSeek R1 vs V3 and Claude 3.7 Sonnet (reasoning vs non-reasoning):



Key Implications from our Evaluation

▸ Claims of surpassing elite humans (which is unfortunately not true today) need serious qualification 

▸ Models excel at implementation precision, not superior reasoning

▸ Creative insights and observations remain uniquely human strengths

▸ Claimed high performance largely driven by tool augmentation, not reasoning breakthroughs

▸ Significant room for improvement in edge case handling and algorithmic creativity

▸ Genuine liveness is important for future benchmarks to distinguish native reasoning from tool use

The gap to human grandmaster levels remains significant,

especially in areas demanding novel insights and creativity.
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5.  Open Questions & Discussion
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LiveCodeBench Pro: What’s next? 

▸ Problem creation: 
Could AI craft novel, hard algorithmic problems—and how 

would we ensure their rigor?

▸ Model self-improvement:
How might we enable models to test, critique, and refine their 

own solutions—without human-in-the-loop?

▸ Recursive RL framework:
What would an end-to-end loop of problem creation →

evaluation → targeted improvement look like in practice?
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Thank you!
Any questions?
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