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What is Video
Understanding

Video is a time-ordered stream of images, typically 24-60
frames per second, so it carries far more information than a
single image: motion, causality, and temporal context.

Video understanding is broadly useful across domains:
sports analytics, autonomous driving and drones, robotics,
healthcare (surgery/endoscopy), security, retail/ads, media
recommendation, education, and AR/VR.

In the past, a typical video understanding model could only
handle a single task, such as detecting anomalies, classifying
human actions, or tracking object motion.



One of our work on traditional video understanding

SAMURAI

SAMURAI: Adapting Segment Anything Model for
Zero-Shot Visual Tracking with Motion-Aware
Memory

7,000 Stars on GitHub in 180 days

The most popular tracking project ever.

State-of-the-Art Performance
LaSOT, GOT-10k, TrackingNet, NFS, OTB100, etc.

50 Citaions in 180 days

- - What's next for video understanding?
AMURAI (OUFS) with LLM!




Video LLMs
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Some of our work on LLM-based video understanding

Long @ MovieChat: From Dense Token to Sparse Memory for Long Video
Understanding Computer Vision and Pattern Recognition (CVPR), 2024

MovieChat+: Question-aware Sparse Memory for Long Video Question
Answering IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), 2025

Detail @ AuroraCap: Efficient, Performant Video Detailed Captioning and a

New Benchmark International Conference on Learning Representations
(ICLR), 2025

Knowledge @ Video-MMLU: A Massive Multi-Discipline Lecture Understanding
Benchmark International Conference on Computer Vision (ICCV)
Workshop @ Findings

Efficient @ AuroraLong: Bringing RNNs Back to Efficient Open-Ended Video
Understanding International Conference on Computer Vision (ICCV), 2025


https://scholar.google.com/citations?view_op=view_citation&hl=en&user=SL--7UMAAAAJ&citation_for_view=SL--7UMAAAAJ:zA6iFVUQeVQC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=SL--7UMAAAAJ&citation_for_view=SL--7UMAAAAJ:zA6iFVUQeVQC

MovieChat

First ever video understanding system that can take over 10,000 frames as input.

Long-form \(ideo
Vision Encoder
Short-term Memory
Long-term Memory

LLM Reasoning

[ .read in .
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compress

What is the main character doing in

the video? Describe their actions in
chronological order.

lread out

A J

——————

He first comfort the children in the house... then go to

the supermarket to buy things for them... This might
be in a war-torn area...




LOVEU@CVPR'24

MovieChat

First ever long-form video understanding challenge hosted in CVPR 2024.

Home - Program - Track1

Track 1: Long-Term Video Question Answering

= This track aims at encouraging our participants to advance long-term video understanding system.

= The competition is based on MovieChat test set only.

= Top 3 winners will be mentioned at the workshop and formally recognized.

] In the video, the character Chief Bogo 1s seen talking to

— ——— —— — —— —— —— — — — i — — — ——— — — — —

- Track?®

What is Chief Bogo doing?

|

|

l [ ] In the video, the rabbit police named Judy is talking to the
| person in a movie theater, who 1s a fox.

someone on a laptop while sitting at a table in a dark room.
Chief Bogo is a cartoon character wearing a brown outfit.

Can you describe this video?

The video shows various scenes of an amimation with different animals in a restaurant or office environment. At the beginning, we see an
animated cartoon rabbit and a deer talking to each other in a restaurant. Next, there 1s a cartoon bunny talking to a cat at a desk, followed by a
scene of a cartoon deer and a mouse talking to each other. The video then continues with the animated cartoon dog and cat sitting at a table in a
restaurant, and another scene where a man and a dog are in a room with a computer on a table. There are more scenes of the same characters
later on, including one with a bunny and a fox sitting at a desk, and another with a bunny and a dog talking to each other in the background.

Finally, there are several more scenes with different animals, including a fox, a mouse, and a cat, all of which are n a different environment.

Model with Link Comment Breakpoint Acc | Global Acc
Video-LLaMA End-to-end 39.1 51.7
VideoChat End-to-end 46.1 57.8
TimeChat CoT, ICL, train on MovieChat | 46.1 73.8
VideoChatGPT End-to-end 48.0 47.6
MovieChat (baseline) End-to-end 48.3 62.3
MovieChat+ (baseline) End-to-end 49.6 71.2
Long-LLaVA Eng-to-end 54.0 69.6
Long-LLaVA + Video-RAG | Eng-to-end 54.5 72.9
Streaming Long Video Train on MovieChat 54.9 90.4
DrVideo RAG 56.7 93.1
ReWind End-to-end 67.2 87.6
HERMES Train on MovieChat T 78.6
Flash-VStream Train on MovieChat 59.6 96.0
MM-Screenplayer RAG 68.8 87.5




VDC

First ever evaluation system for detailed video captioning.

GT caption generated caption
(Draise Who is the main character of this (3ask

The video showcases an video? The video captures a thrilling
exhilarating moment as a @get moment of a snowboarder in
snowboarder soars through the 29 Snowboarder mid-air, performing an
air, executing a stunning trick. (S)check impressive trick. The
Dressed in a bold red and white Q @get snowboarder, clad in a vibrant
jacket, black pants, and a Snowboarder <— red and black jacket, black
protective helmet. The backdrop pants, and a protective helmet.

to this action-packed scene is a The snowboarderis holding onto

(Mraise Who is the main character of this (3)ask

breathtaking snowy mountain 2 >3 ——» arope with one hand, suggesting
landscape. The mountain's peak video? thatthey are being pulled up the
Isvisible in the distance. The @)get mountain by a snowmobile, a
overall composition of thevideo ~— . red andwhite common practice in

(5)check . _
° snowboarding to gain speed and

et momentum...
red and black ‘@L

suggests a high-speed descent
down the mountain ...



VDC with AuroraCap
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AuroraCap

5% tokens but 90% performace.

Accuracy on GQA
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Ratio of visual token kept




AuroraCap
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Video-MMLU

A Massive Multi-Discipline Lecture Understanding Benchmark

Substitution Rule:
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VideoMMLU

Finding 1. Large scale LMMs do not show clear advantages over smaller ones.

Although LMM scaling laws suggest significant performance improvements with increased model size, this trend is less pronounced
in Video-MMLU. Model size shows a stronger correlation with performance in video QA compared to video captioning, implying
reasoning benefits more from scaling.
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Can video LLMs really understand real-world lectures? NOT YET.
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Models with better Caption: 52
Models with better QA: 26
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Caption Performance (Notebook)



Auroralong

RNN can beat Transformers in Video Understanding,.

140 | —@— LongVA

—@— AuroraCap . 2
InternVL2 Vision Encoder
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Something Ongoing

Can Sparse Attention performs well in Video Understanding? (Figure: DeepSeek NSA)

Native Sparse Attention Mechanism
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