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Introduction Background

Background

M.S. University of Washington (UW)
EE Advisors: Jenq-Neng Hwang

2023-2025 Thesis: LMMs for Video Understadning

Visiting Scholar University of Illinois Urbana-Champaign (UIUC)
2022 National Center for Supercomputing Application

B.S. Zhejiang University (ZJU)
2019-2023 Advisor: Gaoang Wang

Research Intern Pika Labs
Summer 2024 Working on Video Captioning

Research Intern Microsoft Research Asia
Spring/Summer 2023 Working on Video Editing
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Research Research Overview

Research Overview

Large Multi-modal Models for Video Understanding

AuroraCap [1] @ ICLR 25 for first video detailed caption
MovieChat [2] @ CVPR 24 for first long-form video

Generative Models for Video, Image, and 3D

StableVideo [3] @ ICCV 23 for video editing

Human Pose and Motion

PoseDA [4] @ ICCV 23, RT-Pose [5] @ ECCV 24 for 3D human pose
UniAP [6] @ AAAI 24 for 2D animal pose

Embodied Agent in Virtual Environment

STEVE [7] @ ECCV 24 for minecraft agent

AI for Applied Science

structure analysis @ civil engineering [8, 9]
medical image analysis [10]
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Research Large Multi-modal Models for Video Understanding

Large Multi-modal Models for Video Understanding

Short videos, short captions — can they tell the whole story?

Figure: Video example of MSR-VTT [11], which is a widely used video question
answering and captioning benchmark. Labeled caption: Teams are playing soccer.
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Research Large Multi-modal Models for Video Understanding

Large Multi-modal Models for Video Understanding

Long videos MovieChat: From Dense Token to Sparse Memory for
Long Video Understanding @ CVPR 24

MovieChat+: Question-aware Sparse Memory for Long
Video Question Answering @ TPAMI minor

Long captions AuroraCap: Efficient, Performant Video Detailed
Captioning and a New Benchmark @ ICLR 25
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Research Large Multi-modal Models for Video Understanding

Long-form Video Understanding
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Figure: The development of LMMs for multiple images, short videos and long
videos from survey paper [12].
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Research Large Multi-modal Models for Video Understanding

Long-form Video Understanding

Why we need long-form video understanding?
Temporal Complexity and Granularity, Narrative Comprehension,
Real-World Applications, etc

What are the current challenges?
Efficiency, Training Data, etc

Can we do that with current LMMs?
Yes! We found that the LMMs trained on images and short videos can be
adapted to long-form video tasks even without further fine-tuning.
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Research Large Multi-modal Models for Video Understanding

Long-form Video Understanding

... ...
Vision Encoder
frame / clip level

Long-form Video
hours / 10,000 frames

Short-term Memory
limited stack

Long-term Memory
unlimited set

LLM Reasoning
text question and answer

read in read in

LLM
What is the main character doing in 
the video? Describe their actions in 
chronological order.

He first comfort the children in the house... then go to 
the supermarket to buy things for them... This might 
be in a war-torn area...

read out

? ?

compress

full

Figure: Framework of MovieChat [2].
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Research Large Multi-modal Models for Video Understanding

Long-form Video Understanding

𝑥ଵ 𝑥ଶ 𝑥ଷ

1.For each set of adjacent frames, 
calculate its cosine similarity.

…

𝑠ଵ 𝑠ଶ 𝑠ଵହ
…

𝑥ଵହ 𝑥ଵ଺

2.Select the pair with the
greatest similarity.

0.52

𝑥ଵ
0.88

𝑥ଵହ
0.81

𝑥ଵସ
0.94

𝑥ଶ

𝑥ଶ 𝑥ଷ

…
3.Merge the two frames then 

form a new sequence.

𝑥ଵ 𝑥ଶଷ … 𝑥ଵହ 𝑥ଵ଺

Short-term 
Memory:
16 frames

Merged Tokens:
2 frames

Memory Consolidation

4. Until reach the 
predefined count. 

𝑥୫ଵ 𝑥୫ଶ

𝑥୫ଵ 𝑥୫ଶ

…

…

Figure: Memory compression in MovieChat [2].
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Research Large Multi-modal Models for Video Understanding

Long-form Video Understanding

Question

…

What transportation will the four protagonists use for the mission?

Video
Frames

Similarity

Highly Relevant Weakly Relevant Weakly RelevantHighly Relevant Highly Relevant

Long-term
Memory

𝑀଴ Merged 
frames

α𝑀଴ Merged 
frames

α𝑀଴ Merged 
frames

𝑀଴ Merged 
frames

…

…α𝑀଴ Merged 
frames

𝑀଴ Merged 
frames

𝑀଴ Merged 
frames

Figure: Question-aware memory selection in MovieChat+ [13].
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Research Large Multi-modal Models for Video Understanding

Long-form Video Understanding

17.2GB

24.0GB
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Figure: Video random-access memory (VRAM) cost under gigabyte (GB) (y-axis)
v.s. frame number (x-axis) comparison.
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Research Large Multi-modal Models for Video Understanding

Long-form Video Understanding

Table: The popular benchmarks for video question answering.

Benchmark Labels #Eval Videos #Eval QAs Avg Duration (s) Released Date

MSVD-QA [14] Auto 520 13,157 10 2011

MSRVTT-QA [15] Auto 2,990 72,821 15 2017

ActivityNet-QA [16] Human 800 8,000 180 2019

NeXT-QA [17] Human 1,000 8,564 44 2021

MovieChat-1K [2] Human 130 1,950 564 2023.7

EgoSchema [18] Auto 5,031 5,031 180 2023.8

MVBench [19] Auto 4,000 4,000 16 2023.11

LongVideoBench [20] Human 3,763 6,678 473 2024.7

Wenhao Chai Application Talk January 11, 2025 13 / 31



Research Large Multi-modal Models for Video Understanding

Long-form Video Understanding

Table: Quantitative evaluation for short video question answering.

Method MSVD-QA MSRVTT-QA ActivityNet-QA NExT-QA
Acc. Sco. Acc. Sco. Acc. Sco. Acc. Sco.

FrozenBiLM 2.2 – 16.8 – 24.7 – – –

VideoChat 56.3 2.8 45.0 2.5 26.5 2.2 56.6 3.2
LLaMA Adapter 54.9 3.1 43.8 2.7 34.2 2.7 – –
VideoLLaMA 51.6 2.5 29.6 1.8 12.4 1.1 – –
Video-ChatGPT 64.9 3.3 49.3 2.8 35.2 2.7 54.6 3.2

MovieChat 75.2 3.8 52.7 2.6 45.7 3.4 49.9 2.7
MovieChat+ 76.5 3.9 53.9 2.7 48.1 3.4 54.8 3.0
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Research Large Multi-modal Models for Video Understanding

Long-form Video Understanding

Table: Quantitative evaluation for long video question answering on
MovieChat-1K test set.

Method Text Decoder # Frames
Global Mode Breakpoint Mode

Acc. Sco. Acc. Sco.

GIT non-LLM based 6 28.8 1.83 29.2 1.98

mPLUG-2 non-LLM based 8 31.7 2.13 30.8 1.83

VideoChat LLM based 32 57.8 3.00 46.1 2.29

VideoLLaMA LLM based 32 51.7 2.67 39.1 2.04

Video-ChatGPT LLM based 100 47.6 2.55 48.0 2.45

MovieChat LLM based 2048 62.3 3.23 48.3 2.57

MovieChat+ LLM based 2048 71.2 3.51 49.6 2.62
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Research Large Multi-modal Models for Video Understanding

Long-form Video Understanding

Figure: Photos with workshop competition winner @ CVPR 2024, Seattle.
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Research Large Multi-modal Models for Video Understanding

Long-form Video Understanding

MovieChat (+) https://arxiv.org/abs/2307.16449

(≈200 citations) https://arxiv.org/abs/2404.17176

GitHub (567⋆) https://github.com/rese1f/MovieChat

Benchmark https://huggingface.co/datasets/Enxin/MovieChat-
1K train (test)

Eval Code https://github.com/EvolvingLMMs-Lab/lmms-eval

Project Page https://rese1f.github.io/MovieChat

Workshop Page https://sites.google.com/view/loveucvpr24/track1
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Research Large Multi-modal Models for Video Understanding

Large Multi-modal Models for Video Understanding

Short videos, short captions — can they tell the whole story?

Figure: Video example of MSR-VTT [11], which is a widely used video question
answering and captioning benchmark. Labeled caption: Teams are playing soccer.
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Research Large Multi-modal Models for Video Understanding

Video Detailed Captioning

AuroraCap: Efficient, Performant Video Detailed Captioning and a New
Benchmark

ICLR 25 submission with score 8, 8, 6, 6, 6
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Research Large Multi-modal Models for Video Understanding

Video Detailed Captioning

Table: Benchmark comparison for video captioning task. Ave. Length indicates
the average number of words per caption.

Dataset Theme # Video # Clip # Caption # Word # Vocab. Ave. Length

MSVD 1,970 1,970 70,028 607,339 13,010 8.67

MSR-VTT 7,180 10,000 200,000 1,856,523 29,316 9.28

ActivityNet 20,000 100,000 100,000 1,340,000 15,564 13.40

S-MiT

Open

515,912 515,912 515,912 5,618,064 50,570 10.89

M-VAD 92 48,986 55,905 519,933 18,269 9.30

MPII-MD
Movie

94 68,337 68,375 653,467 24,549 9.56

Youcook2 Cooking 2,000 15,400 15,400 121,418 2,583 7.88

Charades 9,848 10,000 27,380 607,339 13,000 22.18

VATEX
Human

41,300 41,300 413,000 4994,768 44,103 12.09

VDC (ours) Open 1,027 1,027 1,027 515,441 20,419 500.91
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Research Large Multi-modal Models for Video Understanding

VIdeo Detailed Captioning

⑤check

GT caption

The video showcases an 
exhilarating moment as a 
snowboarder soars through the 
air, executing a stunning trick. 
Dressed in a bold red and white 
jacket, black pants, and a 
protective helmet. The backdrop 
to this action-packed scene is a 
breathtaking snowy mountain 
landscape. The mountain's peak 
is visible in the distance. The 
overall composition of the video 
suggests a high-speed descent 
down the mountain …

generated caption

The video captures a thrilling 
moment of a snowboarder in 
mid-air, performing an 
impressive trick. The 
snowboarder, clad in a vibrant 
red and black jacket, black 
pants, and a protective helmet. 
The snowboarder is holding onto 
a rope with one hand, suggesting 
that they are being pulled up the 
mountain by a snowmobile, a 
common practice in 
snowboarding to gain speed and 
momentum …

Who is the main character of this 
video?

①raise

Snowboarder
②get

Snowboarder
④get

③ask

Who is the main character of this 
video?

①raise

red and white
②get

red and black
④get

⑤check

③ask

Figure: Evaluation pipeline with VDCscore. Like when humans take reading
comprehension tests, we transform the matching between two paragraphs into a
set of question-answer pairings.
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Other Features

Other Features (Current Thinking)

the interesting exploration for bridging AR and diffusion models in text
(and image) generation: Jacobi Decoding

AR pre-training 7→ diffusion-style inference
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Other Features

Jacobi Decoding [21]

AR Jacobi Decoding

iteration

Figure: Jacobi decoding uses AR model as a diffusion-like way.
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Other Features

Jacobi Decoding [21]

Iteration from j-th to j + 1-th.

y
(j+1)
1 = argmaxyp(y |x)
y
(j+1)
2 = argmaxyp(y |y

(j)
1 , x)

y
(j+1)
3 = argmaxyp(y |y

(j)
:3 , x)

...

y
(j+1)
n = argmaxyp(y |y

(j)
:n , x)
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Other Features

(cont’d) However...

1. Gap between training and inference

2. No close-form guarantee for optimization via iteration

3. Mathematically not a standard diffusion process (cold diffusion)

4. Not continue in text space (large concept model)

Blog Link https://rese1f.github.io/blogs.html
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Future Plan

Future Plan

about research - video understanding, generative models, embodied
intelligence and (maybe) cognitive science with high quality papers

about career - faculty job in the university
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