

Hierarchical Auto-Organizing System for Open-Ended Multi-Agent Navigation

Zhonghan Zhao*,1, Kewei Chen*,2, Dongxu Guo*,2, Wenhao Chai†,3, Tian Ye*,4,

Yanting Zhang², and Gaoang Wang^{1,™}

¹ Zhejiang University ² Donghua University ³ University of Washington ⁴ Hong Kong University of Science and Technology (GZ)

E-mail

HAS framework

Motivation

- Navigating complex environments in Minecraft is challenging for multi-agent systems due to inter-agent communication and task distribution problems.
- HAS framework includes a hierarchical navigation system, an auto-organizing and intra-communication mechanism, and a multi-modal information platform.
- We evaluated the organizational behavior of our framework with a series of navigation tasks in Minecraft to develop embodied organizations that move embodied AI towards a more human-like structure.

Contribution

- We introduce HAS, a hierarchical structure for multi-agent navigation based on LLMs in the Minecraft environment. It utilizes centralized planning with decentralized execution, enabling efficient multi-modal navigation in open-ended environments.
- We design an auto-organizing and intra-communication mechanism to dynamically adjust the key role and action group based on the task allocation and maintain inter-group communication to ensure efficient collaboration.
- We achieve state-of-the-art performance on the asynchronous multi-modal navigation task on image, audio, and object goals in Minecraft's open-ended environment.

Experiment

Method	# agents	Image Goal		Object Goal		Audio Goal	
		# iters (\(\psi \)	success rate (†)	# iters (\dagger)	success rate (†)	# iters (\dagger)	success rate (†)
Voyager	1	95	0.21	64	0.41	21	0.67
	3/2/5	45	0.47	36	0.59	6	0.85
STEVE	1	85	0.25	71	0.31	13	0.71
	5/5/4	32	0.52	29	0.57	6	0.82
HAS (Ours)	1	27	0.76	15	0.83	4	0.87
	8/7/3	6	0.84	4	0.95	2	0.99

Goal Search Comparison

Setting	# agents	Goal Search		Block	Search	Map Exploration	
		# iters (\dagger)	success rate (†)	# iters (\(\psi \)	# blocks (†)	# iters (\dagger)	area (†)
w/o DM	1	53	0.46	14	67	6	160
	6/4/5	22	0.64	5	237	3	624
w/o AO	1	41	0.55	35	29	6	172
	5/5/5	15	0.78	11	106	3	706
HAS (Ours)	1	15	0.82	14	68	1	201
	6/8/8	4	0.93	2	367	1	1368

Ablation studies