
Blog Post

ODE Perspective on Neural Networks

Wenhao Chai

Jul 26, 2025

The Neural Network (NN) architecture, despite its empirical success, is often viewed as a discrete
stack of black-box layers. A growing body of research, however, reframes these powerful models
through the lens of continuous-time dynamics, interpreting them as numerical discretizations of
Ordinary and Partial Differential Equations (ODEs/PDEs). This perspective provides a powerful
theoretical foundation that not only enhances our understanding but also drives practical inno-
vation. This post explores this viewpoint, showing how it has led to architectural improvements
like ODE Transformers, provided explanatory frameworks for information flow, and recently
culminated in a paradigm shift towards end-to-end, one-step generative modeling with methods
like MeanFlows. We argue that this continuous-dynamics view is a key to unlocking the next
generation of efficient, interpretable, and powerful models.

1. Neural ODE

Modern neural networks are typically constructed from a sequence of predefined, repeated layers or
blocks, where each layer or block applies a transformation to its input. Without loss of generality, we
focus on the ResNet [7, 8] family of models that include skip connections, which can be formulated as:

ht+1 = ht + f (ht, θt) (1)

where ht denotes the hidden state at layer t, f is a learnable transformation function (typically
composed of convolutions, normalization, and non-linearities) with the parameters θt. This residual
formulation suggests that the evolution of hidden states can be interpreted as a discretization of an
underlying continuous transformation.

This formula bears a striking resemblance to the forward Euler method, a fundamental numerical
technique for approximating the solution to an ordinary differential equation (ODE):

ht+∆t = ht + ∆t · dh(t)
dt

(2)

Building upon this intuition, Neural Ordinary Differential Equations (Neural ODEs) [3] propose
replacing the discrete sequence of transformations with a continuous dynamical system:

dh(t)
dt

= f (h(t), t, θ) (3)

where the hidden state h(t) evolves continuously over time under the dynamics defined by f . The
final representation is obtained by solving this ODE from an initial state h(0) to a target time using
an ODE solver. This formulation not only provides a principled approach to modeling depth as a
continuous variable but also offers benefits such as adaptive computation and memory efficiency.

Although the formulations appear similar, there is a difference in how parameters are used:



ODE Perspective on Neural Networks

• In ResNet, each layer employs independent parameters f (·, θt), meaning each (θt is specific to
layer t.

• In Neural ODEs, the dynamics are defined by a single shared function f (h(t), t, θ) with shared
parameters θ, treating the model as a continuous-time dynamical system.

It is worth noting that scaling the residual branch by a factor such as 1/t [5] or learnable [8, 14, 16,
17] further strengthens the connection between ResNets and Neural ODEs. Specifically, this scaling
can be interpreted as introducing an explicit step size ∆t in the forward Euler discretization. This also
connects to the scheduler design in VE-SDE (Variance Exploding Stochastic Differential Equation) [13]
in diffusion models, which is constructed to maintain variance stability. In a sense, it aligns with
the layer-wise evolution in ResNets that progressively adjusts signal propagation. This implies
that ResNet can be viewed as a finite sequence of transformations, each with distinct parameters.
Neural ODEs represent a continuous-depth model, effectively modeling an infinitely fine-grained
transformation with unified parameters.

While ResNet naturally correspond to a forward Euler discretization of an ODE due to their residual
additive form, DenseNet [9] differ substantially. The core design of DenseNet involves concatenating
all previous layer outputs, leading to a growing feature dimensionality and non-Markovian dynamics.
As such, DenseNet cannot be directly formulated as a standard Neural ODE.

We also briefly introduce two papers: ODE Transformer [11] and OT Transformer [10], providing
guidance from the ODE perspective on higher-order solution methods, architectural design, and
optimization strategies for Transformers.

Higher-order Solver. Classic Pre-Norm Transformer is mathematically equivalent to a first-order
Euler step for solving an ODE. However, the Euler method is prone to truncation error. When stacking
many layers (integration steps), this leads to error accumulation and degraded performance especially
in deep models. To mitigate this, the authors propose replacing the Euler-based residual block with
higher-order ODE solvers. Instead of stacking many first-order approximation layers, it’s better to use
fewer layers where each layer achieves higher-order precision through multiple internal computations.
ODE Transformer uses groups of residual blocks as its basic unit. Within each ODE block, multiple
implicit sub-layer computations are performed—analogous to the Runge-Kutta multi-step method.
The same parameters are reused across these internal steps, enabling parameter sharing and improving
parameter efficiency. For a second-order Runge-Kutta block as an example, we have the formulation:

F1 = f (ht, θt) (4)
F2 = f (ht + F1, θt) (5)

ht+1 = ht +
1
2
(F1 + F2) (6)

Instead of just doing one step like in a normal residual connection (Euler method), it takes a “look
ahead”, averages the change, and uses that to update ht.

Optimal Transport. Just like in ODE-based methods such as flow matching, introducing a regular-
ization term like optimal transport (OT) is also a natural idea. To address training instability and the
non-uniqueness of solutions, the authors introduce the following regularization term:

2



ODE Perspective on Neural Networks

OT Objective :=
λ

2dn

∫ T

0
∥ f (ht, t)∥2

F dt (7)

While not explicitly computing the Wasserstein distance to a linear path, the regularization term
resembles the kinetic energy formulation of Wasserstein-2 and encourages hidden state trajectories to
evolve smoothly to an optimal transport flow.

2. Universal Transformer

Recently, approaches such as Universal Transformer (UT) [4] which involve recurrently reusing
Transformer layers, have become popular again. This resurgence is driven by the ongoing pursuit of
new scaling dimensions. While test-time compute has shown promise in scaling with sequence length,
works like the Universal Transformer aim to approximate similar benefits by increasing depth through
layer reuse. Among the recent developments in recurrently stacked or depth-reused Transformers, the
other two notable branches reinterpret the architecture through the lens of Deep Equilibrium Models
(DEQ) [2] and Hopfield networks [12].

Recurrent Depth [6]. This work proposes a decoder-only transformer architecture with a recurrent
latent block. At inference time, the block is unrolled many times to produce a final latent, which is
decoded via a lightweight coda. All recurrent steps share parameters, enabling the model to scale
compute depth at test-time without increasing parameters. Gradients are truncated to the final steps
during training for memory efficiency. Empirically, increasing recurrence improves performance on
reasoning-heavy tasks such as GSM8K and HumanEval,

Mixture-of-Recursions [1]. Furthermode, a lightweight router is integrated into the model. This
router operates at the token level to dynamically decide the ”recursion depth” for each token—that
is, how many times the shared block should be applied. This allows the model to allocate more
computational resources to semantically complex tokens and fewer to simpler ones.

Deep Equilibrium Models [2]. DEQ models treat an infinitely deep Transformer with shared
parameters across layers as the solution to a fixed-point equation. Instead of explicitly stacking an
infinite number of layers, DEQ directly solves for the equilibrium hidden state using iterative methods
such as Newton’s method. It show that many sequence models naturally converge to a fixed point in
their hidden representations, allowing the model to compute gradients via implicit differentiation
without backpropagating through every iteration. This formulation enables scaling in depth while
only storing the parameters of a single Transformer layer.

Hopfield Networks [12]. A Hopfield network is a dynamic system characterized by an energy
function; it performs iterative updates that converge to an energy minimum, corresponding to a stored
memory pattern. In the Transformer context, queries are viewed as initial states, and keys serve as
memory patterns. The attention update step pulls the query states closer to energy minima defined
by those patterns. Thus, each Transformer layer can be interpreted as performing a single step of
Hopfield retrieval.

3



ODE Perspective on Neural Networks

Although these successful approaches may not all explicitly follow ODE modeling, we are seeing
an increasing number of successful cases with layer-wise shared parameters at the architectural level,
which will help advance research in Neural ODE.

3. Discussion

Overall, neural ODEs serve as a powerful and intriguing explanatory framework, with notable
advances in both theoretical foundations and architectural design in recent years. At the same time, it is
worth noting that diffusion models and flow matching approaches can, in general, be understood and
modeled through the lens of SDEs and ODEs. For a flow matching model, the inference process along
the time axis can essentially be viewed as a depth-recurrent model stacking layers over time, where
most parameters are shared, and only a small portion (such as time embeddings) are not—though
even these may not be strictly necessary [15]. As a result, many techniques commonly used in flow
matching, such as distillation, high-order solvers, and controlled generation, may find renewed
relevance when brought back into the neural ODE framework.

Acknowledgments

We would like to acknowledge that some of the insights, content, and references in this blog are
adapted from this link and the slides from Kaiming He.

4

https://zhuanlan.zhihu.com/p/28508490082
https://people.csail.mit.edu/kaiming/cvpr25talk/cvpr2025_meanflow_kaiming.pdf


ODE Perspective on Neural Networks

References

[1] Sangmin Bae, Yujin Kim, Reza Bayat, Sungnyun Kim, Jiyoun Ha, Tal Schuster, Adam Fisch,
Hrayr Harutyunyan, Ziwei Ji, Aaron Courville, et al. Mixture-of-recursions: Learning dynamic
recursive depths for adaptive token-level thinking. In ES-FoMo III: 3rd Workshop on Efficient
Systems for Foundation Models.

[2] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. Deep equilibrium models. Advances in neural
information processing systems, 32, 2019.

[3] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

[4] Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Łukasz Kaiser. Universal
transformers. arXiv preprint arXiv:1807.03819, 2018.

[5] Nolan Dey, Bin Claire Zhang, Lorenzo Noci, Mufan Li, Blake Bordelon, Shane Bergsma, Cengiz
Pehlevan, Boris Hanin, and Joel Hestness. Don’t be lazy: Completep enables compute-efficient
deep transformers. arXiv preprint arXiv:2505.01618, 2025.

[6] Jonas Geiping, Sean McLeish, Neel Jain, John Kirchenbauer, Siddharth Singh, Brian R Bartoldson,
Bhavya Kailkhura, Abhinav Bhatele, and Tom Goldstein. Scaling up test-time compute with
latent reasoning: A recurrent depth approach. arXiv preprint arXiv:2502.05171, 2025.

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
770–778, 2016.

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In European conference on computer vision, pages 630–645. Springer, 2016.

[9] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 4700–4708, 2017.

[10] Kelvin Kan, Xingjian Li, and Stanley Osher. Ot-transformer: a continuous-time transformer
architecture with optimal transport regularization. arXiv preprint arXiv:2501.18793, 2025.

[11] Bei Li, Quan Du, Tao Zhou, Yi Jing, Shuhan Zhou, Xin Zeng, Tong Xiao, JingBo Zhu, Xuebo Liu,
and Min Zhang. Ode transformer: An ordinary differential equation-inspired model for sequence
generation. arXiv preprint arXiv:2203.09176, 2022.

[12] Hubert Ramsauer, Bernhard Schäfl, Johannes Lehner, Philipp Seidl, Michael Widrich, Thomas
Adler, Lukas Gruber, Markus Holzleitner, Milena Pavlović, Geir Kjetil Sandve, et al. Hopfield
networks is all you need. arXiv preprint arXiv:2008.02217, 2020.

[13] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

[14] Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. 2023.

5



ODE Perspective on Neural Networks

[15] Qiao Sun, Zhicheng Jiang, Hanhong Zhao, and Kaiming He. Is noise conditioning necessary for
denoising generative models? arXiv preprint arXiv:2502.13129, 2025.

[16] Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Dongdong Zhang, and Furu Wei.
Deepnet: Scaling transformers to 1,000 layers. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 46(10):6761–6774, 2024.

[17] Xiao Zhang, Ruoxi Jiang, William Gao, Rebecca Willett, and Michael Maire. Residual connections
harm generative representation learning. arXiv preprint arXiv:2404.10947, 2024.

6


	Neural ODE
	Universal Transformer
	Discussion

