
Blog Post

View Transformer Layers from Online
Optimization Perspective

Wenhao Chai

First posted: May 20, 2025
Last updated: May 21, 2025

In this blog, we first revisit the fast weight programming perspective on linear attention. We
then explore Mesa Layer [2], which reveals that standard autoregressive Transformers trained
on next-token prediction can implicitly implement gradient-based learning algorithms during
inference. It push the boundary of what it means for a model to ”learn at test time” and offer new
insights into the intersection of memory and sequence modeling.

Linear Attention
St = St−1 + vtk⊤t

Fast Weight View
∇Lt(S) = −vtk⊤t

Test-Time Training (TTT)
Lt(fS) =

1
2∥ fS(kt)− vt∥2

Mesa Layer
arg min fS ∑ 1

2∥ fS(kt)− vt∥2 + λ
2 ∥ fS∥2

F

Fig. 1: Overview of this blog. From linear attention to fast weight view, Test-Time Training (TTT), and finally
Mesa Layer, showing increasing expressivity and optimization complexity.

1. Background: Linear Attention and State-space Model

We begin by reviewing the standard Transformer notation to set the stage for understanding linear
attention and its relationship to state-space models (SSMs).

Given an input sequence x1, x2, . . . , xT ∈ RD, the attention layer maps each input token xt to
a query qt = Wqxt, key kt = Wkxt, and value vt = Wvxt, where Wq, Wk, Wv ∈ Rd×D are learned
projection matrices. The output at time step t is given by the standard softmax attention:

ot =
t

∑
j=1

αtjvj, αtj =
exp(q⊤t k j)

∑t
l=1 exp(q⊤t kl)

. (1)

This softmax-based formulation ensures that attention weights are positive and sum to one,
allowing the model to selectively focus on relevant past information. While softmax attention is
effective, its quadratic time and memory complexity with respect to sequence length T becomes a
bottleneck for long-context modeling. Linear attention addresses this by replacing the softmax with a
kernel function ϕ(·). In the simplest case, using ϕ(x) = x (i.e., identity function), the attention reduces
to an unnormalized form:

ot =
t

∑
j=1

vj

(
k⊤j qt

)
=

(
t

∑
j=1

vjk⊤j

)
qt = Stqt. (2)

Here, we define the matrix-valued hidden state St ∈ Rd×d as the accumulated sum of outer
products of past key and value vectors to get rid of the KV cache that grows with sequence length:

View Transformer Layers from Online Optimization Perspective

Table 1: From [3]. Overview of recent linear Transformer models, which make use of a matrix-valued hidden
state St ∈ Rd×d that is updated through an associative recurrence followed by an outer-product-based addition.

Model Recurrence Memory read-out

Linear Attention St = St−1 + vtk
⊺
t ot = Stqt

+ Kernel St = St−1 + ϕ(vt)k
⊺
t ot = Stϕ(qt)

+ Normalization St = St−1 + ϕ(vt)k
⊺
t , zt = zt−1 + ϕ(kt) ot = Stϕ(qt)/(z

⊺
t ϕ(qt))

GLA St = St−1 ⊙ (t
⊺
t) + vtk

⊺
t ot = Stqt

HGRN2 St = St−1 ⊙ (t1⊺) + vt(1−t)⊺ ot = Stqt
RWKV-6 St = St−1 ⊙ (t1⊺) + vtk

⊺
t ot = (St−1 + (d ⊙ vt)k

⊺
t)qt

Mamba St = St−1 ⊙ exp(−(t1⊺)⊙ exp(A)) + (t⊙xt)k
⊺
t ot = Stqt + d ⊙ xt

mLSTM St = ftSt−1 + itvtk
⊺
t , zt = ftzt−1 + itkt ot = Stqt/ max{1, |z⊺t qt|}

DeltaNet St = St−1(I − βtktk
⊺
t) + βtvtk

⊺
t ot = Stqt

St :=
t

∑
j=1

vjk⊤j . (3)

This formulation offers a key computational advantage: by exploiting the associativity of matrix-
vector multiplication, we can compute the attention output at time t using the current query vector qt
and the pre-computed state matrix St, without explicitly iterating over all past tokens. Moreover, St
can be updated incrementally in constant time as new tokens arrive, following a rank-one update rule:

St = St−1 + vtk⊤t . (4)

Thus, linear attention transforms the original O(T2) attention mechanism into a recurrent-style
process with O(T) time complexity, where the model only needs to maintain and update a fixed-size
O(d2) memory matrix St over time.

Interestingly, this recurrent update in linear attention mirrors the update rule of certain state-space
models. In general, an SSM is defined as:

ht = Atht−1 + Btxt, yt = Ctht, (5)

where ht is the hidden state, xt the input, and yt the output. This reveals that linear attention is not
merely a Transformer variant—it is a specific instance of a state-space model, where memory is stored
and updated through structured recurrence.

As shown in Table 1, we can formulate Linear Transformers and state-space models under a unified
framework. Their main difference lies in how the hidden state S is updated over time, as well as how
it interacts with new queries.

2. Fast Weight Programming

“Fast weights provide a neurally plausible way of implementing the type of temporary storage that is
required by working memory, while slow weights capture more permanent associations learned over
many experiences.” — Geoffrey Hinton

2

View Transformer Layers from Online Optimization Perspective

St−1kt

vt

Stkt

(a) Linear Attention

St−1kt

vt

Stkt

(b) DeltaNet

fSt−1 kt

vt

fSt kt

(c) TTT

Fig. 2: Geometric perspective of state update. The goal of linear attention can be interpreted as maximizing the
alignment between the predicted vector Stkt and the target value vector vt.

In this view, the hidden state St serves as a form of fast weights that are rapidly updated at each
time step to store temporary associations from recent inputs. These fast weights are distinct from the
slow weights (e.g., Wq, Wk, Wv, or transition matrices A, B, C in SSMs), which are learned parameters
updated during training and shared across the entire sequence.

We revisit the update rule for the hidden state S in the simplest form of linear attention:

St = St−1 + vtk⊤t .

If we consider St as an updated weight, we first define a simple objective function at time step t:

Lt(S) = −⟨Skt, vt⟩. (6)

This objective encourages S to transform kt into a vector that is well aligned with vt. Taking the
gradient of this loss with respect to S gives:

∇Lt(S) = −vtk⊤t . (7)

A single step of stochastic gradient descent (SGD) on this loss yields the update rule:

St = St−1 − βt∇Lt(St−1) = St−1 + βtvtk⊤t , (8)

where βt is a learning rate that controls the step size of the update. In standard linear attention, this
is implicitly set to βt = 1, and it just the form in Equation 4. As shown in Figure 2 (a), this corresponds
to minimizing the angle between them and increasing the magnitude of Stkt. In essence, it adjusts
the response along the direction of kt so that it better aligns with vt. This way, when a similar key
vector appears in the future, the memory matrix S will produce an output that is more aligned with
the previously observed value vt. The model incrementally learns the association “if you see kt, then
output vt,” embedding this knowledge into the fast weights.

An alternative formulation proposed by [3] shown in Figure 2 (b) is to directly minimize the
squared Euclidean distance between the predicted output Skt and the ground-truth target vt:

Lt(S) =
1
2
∥Skt − vt∥2 (9)

The gradient of this loss with respect to S is:

3

View Transformer Layers from Online Optimization Perspective

∇Lt(S) = (Skt − vt)k⊤t (10)

This leads to the following update rule via stochastic gradient descent:

St = St−1 − βt∇Lt(St−1) = St−1 − βt(St−1kt − vt)k⊤t (11)

Test-Time Training (TTT) [1] further generalizes the fast weight perspective by treating the hidden
state St not merely as a memory matrix, but as the parameters of a learnable model that evolves via
gradient descent on a self-supervised objective during inference.

Equation 6 and 9 assumes a linear relationship between the key kt and target vt since the only
modeling term is the state matrix S. While computationally efficient, such a formulation limits the
expressivity needed to capture complex, nonlinear dependencies tasks. TTT lifts this limitation by
modeling St as the parameters of a learnable function fSt , and updating it via online gradient descent:

Lt(fS) =
1
2
∥ fS(kt)− vt∥2. (12)

In a sense, TTT also can be viewed as a parametric and learnable generalization of kernelized
linear attention—replacing fixed feature maps with gradient-updated neural learners

TTT proposes two instantiations of the function fS, each capturing a different level of model
expressivity:

TTT-Linear : fS(x) = LN(Linear(x)) + x (13)

Here, LN(·) denotes layer normalization. While the core transformation Linear(x) is linear, the
inclusion of layer normalization introduces a form of nonlinearity.

TTT-MLP : fS(x) = LN(MLP(x)) + x, where MLP(x) = W2 σ(W1x) (14)

In this case, fS is a two-layer feedforward network with GeLU activation σ, mirroring the archi-
tecture of MLP blocks in Transformer with an intermediate hidden dimension typically expanded
by a factor of 4. In both variants, the parameters S define a per-sequence learner that is continually
updated at test time via gradient descent. This allows the model to adaptively encode fine-grained
token-level associations—effectively learning “on the fly” from the input sequence.

3. Mesa-optimization

In the above discussion, we considered how the state updates in linear transformers during sequence
modeling tasks can be viewed as an online optimization process. This optimization occurs along the
sequence dimension, meaning that each time a new token is added, the state is updated once.

Mesa Layer [2] advances this view by proposing that Transformers implicitly implement a more
general in-context learning algorithm—without being explicitly trained for it. They hypothesize that
next-token prediction training installs an internal optimization loop that iteratively updates a latent
predictor fS during inference. Specifically, for linear sequence modeling tasks, the goal is to find a
predictor fS such that:

fS = arg min
fS

T−1

∑
t=1

1
2
∥ fS(kt)− vt∥2 +

λ

2
∥ fS∥2

F, (15)

4

View Transformer Layers from Online Optimization Perspective

where λ is a regularization constant. They made a bold methodological shift: rather than relying
on gradient descent as in prior work, the Mesa layer analytically derives a closed-form solution of this
ridge regression:

fS =

(
T−1

∑
t=1

vtk⊤t

)(
T−1

∑
t=1

ktk⊤t + λI

)−1

. (16)

There are two perspectives to understand how mesa-optimization unfolds inside a Transformer:

• Step-wise (temporal) view: At each time step t, the model updates an internal predictor fS based
on all previous input-target pairs {(kt′ , vt′)}t′<t, producing an output ot = fSqt. This corresponds
to performing close-form solution per new token, progressively refining the in-context predictor
fS as the sequence grows.

• Layer-wise (depth) view: For a fixed token t, successive layers of the Transformer refine the
token’s internal representation. In this view, each layer executes a portion of the optimization
algorithm, so that after passing through each layer, the model has constructed a well-optimized
fS suitable for predicting vt from kt.

Both views are simultaneously valid. Along the sequence (step-wise), new tokens provide new
supervision. Along the depth (layer-wise), the model iteratively processes each token’s local context
to optimize and apply fS. This unified dynamic effectively turns Transformer inference into an online
optimizer over layers and time.

In practice, the Equation 16 enables an efficient per-token update through recursive least squares.
By maintaining the inverse covariance matrix Rt ∈ Rd×d:

Rt = Rt−1 −
Rt−1ktk⊤t Rt−1

1 + k⊤t Rt−1kt
, R0 = λ−1 I, (17)

the predictor fS can be updated incrementally:

fS =

(
t

∑
j=1

vjk⊤j

)
Rt. (18)

The final attention output becomes:

ot = fSqt =

(
t

∑
j=1

vjk⊤j

)
Rtqt. (19)

This recursive construction not only avoids quadratic complexity but also tightly integrates
learning into the inference-time dynamics. Compared to the linear attention update St = St−1 + vtk⊤t ,
which can be seen as a one-step gradient descent (as discussed in Section 2), the mesa-layer executes
an exact least-squares fit over all previous key-value pairs. It transforms Transformer inference into a
memory-efficient, online ridge regression solver that generalizes better across longer sequences and
dynamic input distributions.

5

View Transformer Layers from Online Optimization Perspective

4. Discussion

While Transformer layers have been successfully interpreted as online optimizers in autoregressive
language models, this perspective does not seamlessly transfer to Vision Transformers (ViTs) or
Diffusion Transformers (DiTs), which operate on spatially unordered image patches and are trained
without explicit token-level supervision or autoregressive masking. Despite the absence of a natural
sequence or causal context, ViTs still exhibit strong performance across visual tasks. It raises the
question: what kind of optimization, if any, unfolds across ViT layers?

One possible interpretation is that ViTs instantiate a depth-wise optimization process, where each
layer serves not as a temporal update but as a refinement operator over a static input set. In MIM
tasks, for example, the model receives corrupted images and gradually reconstructs missing patches
by diffusing information across the token grid. Here, the notion of “optimization” is spatial and
local: each patch token attends to others to iteratively improve a shared latent representation. Unlike
the token-by-token predictor fS in language models, ViTs construct a global latent structure in a
fully-parallel manner. The optimization process, if it exists, is implicitly encoded in the compositional
transformations applied layer by layer.

Moreover, the absence of a causal mask in ViTs leads to a fundamentally different role for atten-
tion. Rather than computing sequence-conditioned updates, each token aggregates context from all
other locations simultaneously, suggesting that ViTs function more like iterative solvers in graphical
models—performing inference over a set of mutually dependent variables, rather than optimizing
a unidirectional predictor. This depth-wise inference may resemble energy minimization or score
matching, where each layer nudges the current state toward a lower-energy configuration aligned
with the reconstruction or contrastive objective.

In short, while autoregressive Transformers clearly exhibit step-wise mesa-optimization dynamics,
ViTs hint at a more spatially-distributed, depth-wise optimization process. Understanding whether this
process can be made explicit—through layer-wise objectives, differentiable solvers, or architectural
priors—could provide new insights into the inductive biases of Transformer architectures in vision.

Acknowledgments

We would like to thank the authors of all the papers referenced in this blog for their valuable contri-
butions to advancing the field. In particular, we are grateful to Songlin Yang, whose notations and
organization this post partially follows.

Citation. If you find this blog helpful, please cite:

@article{chaiview,

title={View Transformer Layers from Online Optimization Perspective},

author={Chai, Wenhao},

year={2025},

url={\url{https://wenhaochai.com/assets/file/blog/mesa.pdf}},

}

6

View Transformer Layers from Online Optimization Perspective

References

[1] Yu Sun, Xinhao Li, Karan Dalal, Jiarui Xu, Arjun Vikram, Genghan Zhang, Yann Dubois, Xinlei
Chen, Xiaolong Wang, Sanmi Koyejo, et al. Learning to (learn at test time): Rnns with expressive
hidden states. arXiv preprint arXiv:2407.04620, 2024.

[2] Johannes Von Oswald, Maximilian Schlegel, Alexander Meulemans, Seijin Kobayashi, Eyvind
Niklasson, Nicolas Zucchet, Nino Scherrer, Nolan Miller, Mark Sandler, Max Vladymyrov, et al.
Uncovering mesa-optimization algorithms in transformers. arXiv preprint arXiv:2309.05858, 2023.

[3] Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, and Yoon Kim. Parallelizing linear transform-
ers with the delta rule over sequence length. arXiv preprint arXiv:2406.06484, 2024.

7

	Background: Linear Attention and State-space Model
	Fast Weight Programming
	Mesa-optimization
	Discussion

