
Blogs

Flow Matching Variant for Denoising Diffusion Codebook
Models

Wenhao Chai

In this blog, we introduce Denoising Diffusion Codebook Models (DDCM) [2] and extend it to the
flow matching [1] framework.

1. Introduction.

Denoising Diffusion Codebook Model (DDCM) [2] integrates Denoising Diffusion Models (DDMs)
with pre-defined codebooks of fixed Gaussian noise vectors to enable high-quality image generation
alongside losslessly compressed bit-stream representations. By substituting the standard Gaussian
noise sampling in the reverse diffusion process with selections from compact codebooks, DDCM
maintains the sample quality and diversity of traditional DDMs, even with extremely small codebooks.
This approach is leveraged for state-of-the-art perceptual image compression, where the codebook
entries that best match a given image are encoded into a condensed bit-stream, achieving efficient
lossy compression. Beyond compression, the method is extendable to conditional image generation
tasks (e.g., inpainting, restoration) by defining noise selection rules tailored to specific conditions,
allowing generated outputs to be paired with compact representations.

2. On DDPM

The Denoising Diffusion Probabilistic Model (DDPM) sampling process is defined as:

xt−1 = µ(xt) + σtεt, εt ∼ N (0, I)

DDCM modifies this by restricting noise samples to a finite set:

xt−1 = µ(xt) + σtεt, εt ∼ Ct

where Ct is a codebook containing K pre-sampled noise vectors from N (0, I).
Under the condition of known x0, DDPM’s conditional sampling formula becomes:

p(xt−1|xt, x0) = N
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This can be rewritten as:
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For encoding, DDCM selects the optimal noise from the codebook:

εt = arg max
ε∈Ct

ε · (x0 − µ̄(xt))
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3. On Flow Matching

Flow Matching is based on an ordinary differential equation (ODE):

dxt

dt
= v(xt, t)

where v(xt, t) is the learned velocity field, with t ∈ [0, 1], x0 being the real sample, and x1 being
noise.

Discretization of the Velocity Field To create a Flow Matching version of DDCM, we need to
discretize the continuous velocity field:

We discretize the time axis into t1, t2, ..., tT, with corresponding states xt1 , xt2 , ..., xtT .
The discretized update rule is:

xti+1 = xti +
∫ ti+1

ti

v(xs, s)ds

Which can be approximated as:

xti+1 ≈ xti + ∆ti · v(xti , ti)

Introduction of a Finite Direction Set Similar to DDCM, we introduce a finite set of directions
Di = {d1, d2, ..., dK}, where each dk is a unit vector in Rd.

The modified update rule becomes:

xti+1 = xti + ∆ti · si · di, di ∈ Di, si ∈ R+

where di is the direction and si is the step size.

Conditional Flow Matching For a given x0, we aim to find the optimal path.
We define a conditional velocity field:

vc(xt, t, x0) = v(xt, t) + λ(t)( f (x0, t)− g(xt, t))

where f (x0, t) is the target value, g(xt, t) is the predicted value, and λ(t) is a weighting function.

DDCM Encoding Formula in Flow Matching The optimal direction is selected as:

di = arg max
d∈Di

d · vc(xti , ti, x0)

The optimal step size is:

si =
|vc(xti , ti, x0)|

∆ti
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Reconstruction Process Given the encoding sequence (d1, d2, ..., dT), the reconstruction process is:

xti+1 = xti + ∆ti · si · di

starting from x1 (noise) and iterating until x0.

Theoretical Approximation Guarantees As K → ∞ (infinite direction set), the discretized version
should converge to the original Flow Matching:

lim
K→∞

DDCM-Flow = Flow Matching

If we introduce importance sampling instead of taking the argmax:

p(d) ∝ exp

(
−1

2
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∥∥∥∥2
)

, d ∈ Di

In this case, as K increases, the encoding process transitions more smoothly to standard Flow
Matching.

4. Conclusion

Adapting DDCM to the Flow Matching framework offers promising directions for efficient image
compression and discrete encoding. The theoretical formulation provided here bridges these two
approaches, combining the deterministic efficiency of Flow Matching with the discrete representation
capability of DDCM. This could potentially lead to faster and more efficient image tokenization
methods for multimodal learning systems.
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